

<u>Procesos de separación y purificación de mezclas basados en el diseño de solventes.</u>

Descripción general

El diseño de productos, moléculas y procesos óptimos debe basarse en pasos sistemáticos. Por ejemplo, los diversos productos de fermentación son de especial interés, pero presentan la dificultad en el paso de la separación y purificación debido a que son mezcla muy diluidas, por ejemplo, los productos de la fermentación ABE (acetona, butanol y etanol). Una configuración de proceso factible incluye el uso de la extracción líquido-líquido (LLE) y la destilación, la cual requiere el diseño/selección del agente de extracción (AE) y el diseño del equipo para superar los azeótropos presentes en el producto de fermentación. Por lo tanto, este estudio propone desarrollar e implementar un marco conceptual para la separación de agua y la purificación de los compuestos. La unidad LLE incluida en el proceso permitirá realizar el diseño y la evaluación de AEs con las características requeridas para la extracción; seguido por el diseño de los equipos para la separación y purificación deseada de la mezcla ABE-agua y la recuperación del agente de extracción para su recirculación en el proceso.

Objetivos

- Diseñar productos/moléculas con características específicas para ser empleado en el proceso de ELL.
- Diseñar los equipos de separación y purificación empleando el simulador de procesos Aspen Plus.
- Determinar la mejor configuración basado en criterios de económicos

Plan de trabajo

En el siguiente cronograma de actividades se detallan las actividades a realizar en el proyecto

CRONOGRAMA DE ACTIVIDADES DEL PROYECTO Semana							
ACTIVIDADES	22-26 JUNIO	29 JUNIO-3 JULIO	6-10 JULIO	13-17 JULIO	20-24 DE JULIO	27-31 DE JULIO	07 AGOSTO
1. Análisis del estado del arte	X	Χ		P			
2. Desarrollo del marco teórico		Х		Maria.			Envío de reporte para memoria
3. Colección de datos para la simulación			X				
4. Simulación del proceso en Aspen Plus	,		Х	Х			
5. Elaboración del reporte final				Х	Х	Х	

Resultados esperados

Generar el diseño de un proceso el cual involucre el proceso de separación y purificación de la mezcla ABE obteniendo las mayores purezas de cada componente de la mezcla ternaria, en el cual se verá involucrada la simulación y síntesis de dicho proceso, así como el análisis económico del proceso (diseño preliminar, estudio de inversión y diseño final).

Obtener configuraciones de proceso de separación y purificación, empleando al menos 2 agentes de extracción en el proceso de ELL.

Responsable del proyecto

Dr. Ricardo Morales Rodríguez

Profesor Asociado C del Departamento de Ingeniería Química

Correo: ricardo.morales@ugto.mx