CONCEPT MAP

ESSENTIALS OF INORGANIC CHEMISTRY (PART II)

Coordination Compounds

The d and f-Block Elements

d-Block Elements

- (Groups 3-12): Transition elements
 There are four main transition series 3d(Sc to Zn),
 4d(Y to Cd), 5d(La, Hf to Hg) and 6d(Ac, Rf to Cn)
- E.C.: $(n-1)d^{1-10}ns^{0-2}$ (where, n is the outermost shell).

Trends and Characteristics of Transition Elements

- Atomic radii decreases with increase in atomic number.
- Having hcp, ccp or bcc metallic structures [except Hg].
- First I.E. is higher than those of s-block elements and lesser than those of p-block elements.
- High m.pt. and b.pt. M.pt. first increase, rise to maximum and then decrease.
- Show variable oxidation states. Most common oxidation state of the first series is +2 [except Sc (+3)]. Higher oxidation state shown by Ru and Os is +8.
- They form complexes, interstitial compounds and alloys.
- Transition metals and their compounds are used as catalyst.
- Transition metal compounds are coloured.
- Transition metal compounds are generally paramagnetic.

Some Important Compounds of Transition Elements

KMnO₄ (Potassium permanganate)

 Preparation: 3K₂MnO₄ + 2H₂SO₄ → 2KMnO₄ + MnO₂ + 2K₂SO₄ + 2H₂O

f-Block Elements

- Inner transition elements.
- Th f-block consists of two series of elements kow n as lanthanides (lanthanoids) and actinides (actinoids).
- E.C.: (n 2)f¹⁻¹⁴ (n 1)d⁰⁻¹ ns² (where, n = 6 for lanthanides and n = 7 for actinides).

Trends and Characteristics of Lanthanides

- Show common stable oxidation state +3.
- Regular decrease in atomic and ionic radii with increase in atomic number is called lanthanide contraction.
- They have low I.E. and high b.pt. and m.pt.
- All the lanthanides are strong reducing agents.

Trends and Characteristics of Actinides

- All actinides show +3 common oxidation state.
- All actinides are radioactive.
- All are strong reducing agents.

Properties:

Chemical Reactivity of Lanthanides

$\stackrel{N_2, \Delta}{\longrightarrow} LnN$
H_2 $LnH_2 + LnH_3$
$X_2, \Delta \rightarrow LnX_3$

K₂Cr₂O₇ (Potassium dichromate)

• Preparation: $4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2$ \longrightarrow $8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2$ $\text{Na}_2\text{CrO}_4 \xrightarrow{\text{(i) Conc. H}_2\text{SO}_4} \longrightarrow \text{K}_2\text{Cr}_2\text{O}_7 + 2\text{NaCl}$

Werner's Coordination Theory

It explains the nature of bonding in complexes. Metals show two different kind of valencies:

- Primary valency: Non-directional and ionisable. It is equal to the oxidation state of the central metal ion. It is satisfied by negative ions.
- Secondary valency: Directional and non-ionisable. It
 is equal to the coordination number of the metal. It is
 commonly satisfied by neutral and negatively charged ions.

| Valence Bond Theory (VBT)

- Bonding in terms of hybridised orbitals of the central metal atom or ion, it explains the shapes and magnetic behaviour of complexes.
- Hybridisation and geometry of complexes:

Coordination no.	Type of hybridisation	Geometry of complex
4	sp ³	Tetrahedral
4	dsp ²	Square planar
5	sp ³ d	Trigonal bipyramidal
6	sp ³ d ²	Octahedral
6	d ² sp ³	Octahedral

Isomerism

- Structural isomerism: Arises due to difference in structures of coordination compounds.
 - Isonisation isomerism :
 - [Co(NH₃)₅Br]Cl; [Co(NH₃)₅Cl]Br
 Hydrate isomerism : [Cr(H₂O)₆]Cl₃;
- [CrCl(H₂O)₅] Cl₂·H₂O, [CrCl₂(H₂O)₄]Cl·2H₂O
- Coordination isomerism :
- [Co(NH₃)₆][Cr(CN)₆]; [Cr(NH₃)₆][Co(CN)₆]
- Linkage isomerism:
 [Co(NH₃)₅ONO]Cl₂; [Co(NH₃)₅NO₂]Cl₂
- Stereoisomerism: Shown by compounds having same structural formula but differ only in the spatial arrangement of ligands around the central atom.
- Geometrical isomerism : Arises due to different possible geometric arrangement of ligands.
- Optical isomerism: Shown by molecule which do not have plane of symmetry.

Crystal Field Theory (CFT)

- According to CFT, under the influence of ligand field, degeneracy of d-orbitals is destroyed and they split into two or more energy levels. The extent of splitting depends upon the strength of ligand.
- Spectrochemical series: Arrangement of ligands in the order of increasing field strength (increasing order of Δ_o).
- $I^- < Br^- < S^{2-} < SCN^- < CI^- < F^- < OH^- < C_2O_4^{2-}$ $< H_2O < NCS^- < NH_3 < en < NO_2^- < CN^- < CO.$
- If $\Delta_o < p$, then complex is high spin.
- If $\Delta_o > p$, then complex is low spin; $\Delta_t = 4/9 \Delta_o$

Splitting of d-orbitals in Tetrahedral and Octahedral Crystal Field

Applications of Coordination Compounds

- In biological system. e.g., chlorophyll, haemoglobin, vitamin B₁₂, etc. are coordinate compounds of Mg, Fe and Co respectively.
- cis-platin is used in cancer treatment, EDTA is often used for treatment of lead poisoning.